1. PHYSICAL AND CHEMICAL PROPERTIES

 Batch Molecular Formula: \(\text{C}_{183}\text{H}_{307}\text{N}_{49}\text{O}_{53} \)
 Batch Molecular Weight: 4041.69
 Physical Appearance: White lyophilised solid
 Net Peptide Content: 77.2%
 Counter Ion: TFA
 Solubility: Soluble to 1 mg/ml in water
 Storage: Store at -20°C
 Peptide Sequence: Ac-Asp-Leu-Ser-D-Phe-His-\(\alpha \)-methyl-Leu-Leu-Arg-Lys-Nle-Ile-Glu-Ile-Glu-Lys-Gln-Glu-Lys-Glu-Lys-Gln-Gln-Ala-cyclo(\(\gamma \)-Glu-Asn-Asn-\(\alpha \)-Lys)-Leu-Leu-Leu-Asp-\(\alpha \)-methyl-Leu-Ile-NH\(_2\)

2. ANALYTICAL DATA

 HPLC: Shows 97% purity
 Mass Spectrum: Consistent with structure

Caution - Not Fully Tested • Research Use Only • Not For Human or Veterinary Use
Product Information

Product Name: Astressin 2B
CAS Number: 681260-70-8

Catalog No.: 2391 Batch No.: 8

Description:
Potent and selective corticotropin-releasing factor receptor 2 (CRF2) antagonist (IC50 values are 1.3 and > 500 nM for CRF2 and CRF1 respectively). Antagonizes CRF2-mediated inhibition of gastric emptying.

Physical and Chemical Properties:
Batch Molecular Formula: C183H360N42O53
Batch Molecular Weight: 4041.69
Physical Appearance: White lyophilised solid

Peptide Sequence:

Storage: Store at -20°C

Solubility & Usage Info:
Soluble to 1 mg/ml in water
This product is supplied as a lyophilized solid and may be very hard to visualize. Solutions should be made by adding solvent directly to the vial. The vial should then be vortexed vigorously to ensure the product has completely dissolved.

Net Peptide Content: 77.2% (Remaining weight made up of counterions and residual water).

Counter Ion: TFA

Stability and Solubility Advice:
Some solutions can be difficult to obtain and can be encouraged by rapid stirring, sonication or gentle warming (in a 45-60°C water bath).
Peptides in solution are much less stable than in lyophilized form. This is especially true for peptides whose sequences contain amino acids such Cys, Met, Trp, Asn, Gln, and N-terminal Glu.
Therefore we recommend storing peptides in solution for as short a time as possible. Avoid repeated freeze thaw cycles by dividing the peptide solution into aliquots and storing the aliquots at -20°C. Any portion of an aliquot unused after thawing should be discarded.
Peptides stored in solution can occasionally be susceptible to bacterial degradation. We recommend using sterile solutions or passing the peptide solution through a 0.2 μm filter to remove potential bacterial contamination whenever possible.

References: