1. PHYSICAL AND CHEMICAL PROPERTIES

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch Molecular Formula:</td>
<td>C_{148}H_{221}N_{41}O_{47}S</td>
</tr>
<tr>
<td>Batch Molecular Weight:</td>
<td>3358.68</td>
</tr>
<tr>
<td>Physical Appearance:</td>
<td>White lyophilised solid</td>
</tr>
<tr>
<td>Net Peptide Content:</td>
<td>88%</td>
</tr>
<tr>
<td>Counter Ion:</td>
<td>TFA</td>
</tr>
<tr>
<td>Solubility:</td>
<td>Soluble to 1 mg/ml in water</td>
</tr>
<tr>
<td>Storage:</td>
<td>Desiccate at -20°C</td>
</tr>
<tr>
<td>Peptide Sequence:</td>
<td>Ser-Gln-Gly-Thr-Phe-Thr-Ser-Glu-Tyr-Ser-Lys-Tyr-Leu-Asp-Ser-Arg-Arg-Ala-Gln-Asp-Phe-Val-Gln-Trp-Leu-Met-Asn-Thr-NH_{2}</td>
</tr>
</tbody>
</table>

2. ANALYTICAL DATA

- HPLC: Shows 97.3% purity
- Mass Spectrum: Consistent with structure
Product Name: des-His1-{Glu9}-Glucagon (1-29) amide

CAS Number: 110084-95-2

Description:
Glucagon receptor antagonist (pA$_2$ = 7.2 for inhibition of glucagon-induced adenylyl cyclase activation in rat liver membranes); displays no agonist activity. Enhances glucose-stimulated pancreatic insulin release in vitro. Blocks added glucagon-induced hyperglycemia in normal rabbits without affecting glycogenolysis in vivo. Also blocks endogenous glucagon-induced hyperglycemia in streptozocin diabetic rats.

Physical and Chemical Properties:
Batch Molecular Formula: C$_{146}$H$_{221}$N$_{47}$O$_{47}$S
Batch Molecular Weight: 3358.68
Physical Appearance: White lyophilised solid

Peptide Sequence:

Storage: Desiccate at -20°C

Solubility & Usage Info:
Soluble to 1 mg/ml in water
This product is supplied as a lyophillized solid and may be very hard to visualize. Solutions should be made by adding solvent directly to the vial. The vial should then be vortexed vigorously to ensure the product has completely dissolved.

Net Peptide Content: 88% (Remaining weight made up of counterions and residual water).

Counter Ion: TFA

Stability and Solubility Advice:
Some solutions can be difficult to obtain and can be encouraged by rapid stirring, sonication or gentle warming (in a 45-60°C water bath).
Peptides in solution are much less stable than in lyophilized form. This is especially true for peptides whose sequences contain amino acids such Cys, Met, Trp, Asn, Gin, and N-terminal Glu.
Therefore we recommend storing peptides in solution for as short a time as possible. Avoid repeated freeze thaw cycles by dividing the peptide solution into aliquots and storing the aliquots at -20°C. Any portion of an aliquot unused after thawing should be discarded.
Peptides stored in solution can occasionally be susceptible to bacterial degradation. We recommend using sterile solutions or passing the peptide solution through a 0.2 μm filter to remove potential bacterial contamination whenever possible.

References: